聚类表阶群集组合系数首次出现阶群集下一阶群集 1群集 2群集 1群集 212730.55500321423.736001232729.82110442728.940305516271.080046616311.18850147481.2070011817241.28700129371.36300191018221.572001311451.68470191214171.75828161315181.900010151412161.99406161510152.298013211612142.5661412171712253.1031602018263.183002319343.326911222012203.605170212110124.180152022223104.64419212323235.450182224242216.29323025252137.2162402726197.5860030272118.860250282821910.489270292922612.89128030301216.00026290
表1—1是聚类表,用来反映每一阶段聚类的结果,系数表示聚合系数,群集集合中 群集1和群集2所在列表示聚合的类,如 阶=1 是样品27和样品30聚为一类,这时有30类;阶=2 是样品14和样品23聚为一类,这时有29类;阶段的分类数等于总的样品数减去这个阶段的序号。在首次出现阶群集中 群集1和群集2表示所聚的两类分别由第几次聚类生成。

图1—1图1是冰状图,是反映样品聚类情况的图。用该图按照设定的类数,在设定的类数的行数上从左到右旧可以找到各类所包含的样品。

图1—2图2是树状聚类图,从图中可以由分类个数得到分类情况。如果从距离为15的地方往下切,则样品可以分为4类,分类结果如下:(北京、上海)、(西藏 )、(广东)、(剩下27个省份聚为一类)
2、 因子分析
相关矩阵粮食支出副食支出饮料支出其他副食衣着支出杂品支出燃料支出非商品相关粮食支出1.000.355.557.399.350.227.237.238副食支出.3551.000.420.518-.014.594.527.622饮料支出.557.4201.000.656.573.364.032.426其他副食.399.518.6561.000.593.732.406.837衣着支出.350-.014.573.5931.000.345.166.490杂品支出.227.594.364.732.3451.000.332.719燃料支出.237.527.032.406.166.3321.000.641非商品.238.622.426.837.490.719.6411.000Sig.(单侧)粮食支出.025.001.013.027.109.100.098副食支出.025.009.001.471.000.001.000饮料支出.001.009.000.000.022.432.008其他副食.013.001.000.000.000.012.000衣着支出.027.471.000.000.029.187.003杂品支出.109.000.022.000.029.034.000燃料支出.100.001.432.012.187.034.000非商品.098.000.008.000.003.000.000
表2-1
表2-2
KMO 和 Bartlett 的检验取样足够度的 Kaiser-Meyer-Olkin 度量。.644Bartlett 的球形度检验近似卡方160.986df28Sig..000
由相关矩阵(表2-1)知各变量间的相关系数大多数大于0.3,再由表2-2知KMO值为0.644﹥0.6,所以数据适合做因子分析表2-3
公因子方差初始提取粮食支出1.000.438副食支出1.000.690饮料支出1.000.785其他副食1.000.850衣着支出1.000.682杂品支出1.000.651燃料支出1.000.642非商品1.000.856提取方法:主成份分析。
公因子方差表给出了这次分析从每个原始变量中提取的信息,表中第三列表示从原始中提取的信息率,也表示行共同元素和。从表中可以知道粮食支出损失最大,信息最完好的是非商品,包含了原始信息的85.6%表2-4
解释的总方差成份初始特征值提取平方和载入合计方差的 %累积 %合计方差的 %累积 %14.20652.57652.5764.20652.57652.57621.39017.36969.9451.39017.36969.9453.91611.45081.3954.7299.10990.5045.3804.74595.2496.1952.44097.6887.1171.46099.1498.068.851100.000提取方法:主成份分析。
解释的总方差表显示了各主成分解释原始变量总方差的情况,表中只保留了特征根大于1的主成分,从表中可以看出2个主成分仅集中了原始8个变量信息的69.945%,效果不是很好。

(图2-1)由图2-1可知特征值从第5个因子开始差异不大,所以提取5个因子较为合适,因此在因子分析对话框中点击“抽取”,选择因子的固定数量,在要提取的因子数量框中填5,得到如下结果:表2-5
公因子方差初始提取粮食支出1.000.992副食支出1.000.949饮料支出1.000.973其他副食1.000.895衣着支出1.000.938杂品支出1.000.970燃料支出1.000.972非商品1.000.931提取方法:主成份分析。
表2-5为提取5个因子后的结果,有表可知从原始数据中提取的信息率很高。表2-6
解释的总方差成份初始特征值提取平方和载入合计方差的 %累积 %合计方差的 %累积 %14.20652.57652.5764.20652.57652.57621.39017.36969.9451.39017.36969.9453.91611.45081.395.91611.45081.3954.7299.10990.504.7299.10990.5045.3804.74595.249.3804.74595.2496.1952.44097.6887.1171.46099.1498.068.851100.000提取方法:主成份分析。
从表2-6可以看出5个主成分集中了原始8个变量信息的95.249%,效果很好表2-7
成份矩阵a成份12345粮食支出.542.379.629.251.310副食支出.708-.435.408-.255-.163饮料支出.695.550.206-.199-.325其他副食.918.091-.190-.092-.009衣着支出.600.568-.407.301.006杂品支出.781-.202-.205-.371.373燃料支出.569-.564.055.566-.076非商品.890-.252-.254.059-.080提取方法 :主成份。a. 已提取了 5 个成份。
成分矩阵给出了标准化原始变量用求得的主成分线性表示的近似表达式,以粮食支出为例,分别用X1、X2、X3、X4、X5代表各个主成分,则由成分矩阵表知:标准化的粮食支出≈0.542X1+0.379X2+0.629X3+0.251X4+0.310X5表2-8
成份得分系数矩阵成份12345粮食支出.129.273.687.345.815副食支出.168-.313.446-.350-.428饮料支出.165.396.225-.272-.856其他副食.218.065-.207-.126-.023衣着支出.143.409-.444.413.017杂品支出.186-.145-.224-.509.984燃料支出.135-.406.060.777-.201非商品.212-.182-.277.082-.212提取方法 :主成份。 构成得分。
例:X1=0.129×粮食支出+0.168×副食支出+0.165×饮料支出+0.218×其他副食+0.143×衣着支出+0.186×杂品支出+0.135×燃料支出+0.212×非商品采用“最大方差法”对因子进行旋转,结果如下:表2-9
旋转成份矩阵a成份12345粮食支出.095.123.152.222.946副食支出.518.486-.355.528.200饮料支出.203-.060.382.820.330其他副食.652.282.452.408.138衣着支出.185.073.916.177.166杂品支出.959.136.117.094.099燃料支出.170.961.058-.037.120非商品.630.585.335.280-.029提取方法 :主成份。 旋转法 :具有 Kaiser 标准化的正交旋转法。a. 旋转在 7 次迭代后收敛。表2-10
成份转换矩阵成份123451.636.439.353.439.2922-.260-.610.607.270.3453-.255.062-.584.307.7044-.514.609.408-.364.2585.446-.245-.014-.712.483提取方法 :主成份。 旋转法 :具有 Kaiser 标准化的正交旋转法。
表2-11
成份得分系数矩阵成份12345粮食支出.023-.057-.061-.3651.098副食支出.064.184-.528.559-.042饮料支出-.297-.112.068.957-.140其他副食.229-.028.187.112-.103衣着支出-.107.033.726-.126-.015杂品支出.913-.395-.112-.542.190燃料支出-.312.834.086-.172.045非商品.116.288.163.080-.277提取方法 :主成份。 旋转法 :具有 Kaiser 标准化的正交旋转法。 构成得分。
由上述三个表的结果可知,旋转后公共因子解释原始数据的能力并没有提高,但成分矩阵和因子得分矩阵都发生了变化。3、对应分析对原始数据进行如下处理:



变量:pro(省份)、out(支出)表3-1
对应表省区支出粮食支出 副食支出 饮料支出 其他副食 衣着支出 杂品支出 燃料支出 非商品 有效边际北京 21.300124.89035.430124.72093.01020.58043.970433.730897.630天津 21.500122.39029.08051.64055.04011.30054.880288.130633.960河北 18.25090.21024.45032.44062.4807.45047.500178.840461.620山西 21.84066.38018.05031.32074.4808.19034.970177.450432.680内蒙古 21.37067.08020.28035.27081.07010.94039.460182.200457.670辽宁 22.740115.88028.21042.44058.0709.63048.650194.850520.470吉林 20.22088.94018.54035.63065.7208.81050.290186.520474.670黑龙江 21.33075.50014.00029.56069.2908.24042.080165.900425.900上海 21.130168.69040.81070.12074.32015.46050.900422.740864.170江苏 18.610122.51027.07042.50063.47015.38036.140240.920566.600浙江 19.960142.24043.330.000101.77012.92053.440394.550768.210安徽 19.610107.13032.85035.77061.3407.53034.600142.230441.060福建 25.560171.65022.30040.53057.13012.60054.030225.080608.880江西 18.750104.68015.55035.61051.80011.18036.270142.720416.560山东 18.27088.34019.07043.19072.98012.59042.160200.180496.780河南 19.07073.18018.01029.38064.5108.91038.140155.450406.650湖北 18.760102.67021.87030.47064.33011.99042.140168.170460.400湖南 20.250104.45020.72038.15062.98012.67039.160213.560511.940广东 23.680173.30017.43043.59053.66016.86065.020385.940779.480广西 18.700131.35011.69032.06041.54010.84042.770178.510467.460海南 16.160139.92012.98023.58024.87010.76032.350144.210404.830重庆 18.180120.39026.18037.94068.16011.64038.480246.370567.340四川 18.530109.95021.49033.04050.98010.88033.960183.850462.680贵州 18.33092.43025.38032.19056.32014.00038.570144.820422.040云南 22.30099.08033.36032.01052.0607.04032.850190.040468.740西藏 29.670146.90064.51054.36086.10014.77032.190193.100621.600陕西 20.03070.75019.75034.95053.29010.55038.200189.410436.930甘肃 18.68072.74023.72038.69062.4109.65035.260170.120431.270青海 20.33075.64020.88033.86053.81010.06032.820171.320418.720宁夏 19.75070.24018.67036.71061.75010.08040.260165.220422.680新疆 21.03078.55014.35034.33064.9809.83033.870161.670418.610有效边际633.8903318.050760.0101216.0501963.720353.3301285.3806637.80016168.230
对应表是由原始数据按pro和out分类的列联表,从表中有效边际那一行可以看到观测总数为16168.230表3-2
摘要维数奇异值惯量惯量比例置信奇异值解释累积标准差相关21.234.055.538.538.004.3422.138.019.188.726.0063.121.015.144.8704.085.007.071.9425.055.003.030.9726.045.002.020.9917.030.001.0091.000总计.1021.0001.000
表3-2给出了行和列记分的关系。惯量比例代表各维度分别解释总惯量的比例及累计百分比,从表中可看出第1、2、3、4维的惯量比例占总惯量的94.2%,因此可以选取4维来进行分析。表3-3
概述行点a省区质量维中的得分惯量贡献12点对维惯量维对点惯量1212总计北京 .032-1.727-.992.028.411.229.810.158.968天津 .032-.357-.054.002.018.001.596.008.605河北 .032.241.099.001.008.002.462.046.508山西 .032.357-.054.002.018.001.565.008.573内蒙古 .032.198-.063.001.005.001.257.015.273辽宁 .032-.042.075.000.000.001.029.053.081吉林 .032.227-.108.001.007.003.458.061.518黑龙江 .032.429-.140.002.025.005.734.046.780上海 .032-1.137.075.010.178.001.949.002.951江苏 .032-.207.000.001.006.000.399.000.399浙江 .032-.3211.293.012.014.390.067.643.710安徽 .032.146.299.002.003.021.105.260.365福建 .032-.175.019.002.004.000.104.001.105江西 .032.325-.237.001.015.013.637.200.837山东 .032.047-.236.001.000.013.029.441.470河南 .032.411-.063.001.023.001.863.012.875湖北 .032.204.043.000.006.000.653.017.671湖南 .032.048-.104.000.000.003.104.295.398广东 .032-.509-.198.007.036.009.282.025.307广西 .032.321-.265.002.014.016.375.150.526海南 .032.504-.144.004.035.005.454.022.476重庆 .032-.088.090.000.001.002.216.134.350四川 .032.210-.022.001.006.000.579.004.583贵州 .032.182.050.001.005.001.261.012.273云南 .032.141.356.002.003.030.090.341.431西藏 .032-.856.984.014.101.226.401.313.714陕西 .032.264-.144.001.010.005.606.107.714甘肃 .032.208-.067.001.006.001.406.025.431青海 .032.301-.084.001.012.002.686.032.718宁夏 .032.288-.179.001.011.007.629.143.772新疆 .032.369-.230.002.019.012.684.157.840有效总计1.000.1021.0001.000a. 对称标准化
概述列点a支出质量维中的得分惯量贡献12点对维惯量维对点惯量1212总计粮食支出 .125-.117.104.002.007.010.212.099.310副食支出 .125-.371.187.011.074.032.379.057.436饮料支出 .125-.605.739.023.195.493.463.408.871其他副食 .125-.799-.681.029.340.419.637.274.911衣着支出 .125-.254.192.006.034.033.291.099.390杂品支出 .125-.433-.117.008.100.012.658.028.686燃料支出 .125-.157.004.005.013.000.156.000.156非商品 .125-.665.026.018.236.001.712.001.712有效总计1.000.1021.0001.000a. 对称标准化
表3-3给出了绘制最后叠加的散点图所需的两套坐标。首先是关于行变量(省区)的点坐标表,如北京(-1.727,-0.992)再是列变量(支出)的点坐标表,如粮食支出(-0.117,0.104)


(图3-1)由图3-1两幅图可知广东、江苏、天津的主要支出为杂品支出,上海以非商品支出为主,浙江、西藏以饮料支出为主,北京的支出为其他副食品支出,重庆、吉林、辽宁省以燃料支出、粮食支出为主,同时依赖衣着支出和副食支出。